
MapleNet 10

Publisher’s Guide

© Maplesoft, a division of Waterloo Maple Inc. 2005.

ii
MapleNet and Maplet are trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2005. All rights reserved.

The electronic version (PDF) of this document may be downloaded and printed for
personal use or stored as a copy on a personal machine. Information in this document is
subject to change without notice and does not represent a commitment on the part of the
vendor. The software described in this document is furnished under a license agreement
and may be used or copied only in accordance with the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the agreement.

The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. Maplesoft is independent of
Sun Microsystems, Inc.

Internet Explorer is a registered trademark of Microsoft Corporation.

Netscape is a registered trademark of Netscape Communications Corporation.

All other trademarks are property of their respective owners.

Contents
Introduction ... 1
1.1 Prerequisites .. 2

Required ... 2
Recommended .. 2

1.2 Installing MapleNet Publisher.. 2
1.3 General Notes... 3

Developing Java-based Applets for MapleNet 5
In this chapter ... 5

2.1 Developing Java-based Applets... 5
2.2 Writing Java-based Applets .. 6

Passing Requests to MapleNet .. 6
Sequence of Events ... 8

Maple Notes ... 8
2.3 Compiling Java Code ... 9
2.4 Creating a JAR File that Contains a Manifest................................. 9

Creating a Manifest ... 10
Creating a JAR File ... 10

2.5 Creating an HTML Page ... 11
Specifying Parameters .. 13
Loading the Web Page ... 13

2.6 Publishing Files to the MapleNet Server 14
Using MapleNet Publishing Scripts ... 14
Example Procedure: How to Create and Publish a JAR File 14
Using the MapleNet Publisher ... 16

2.7 Accessing Published Content .. 18
Developing Maplet Applications for MapleNet............................... 19

In this chapter ... 19
3.1 Writing a Maplet Application Compliant with MapleNet 19

Restrictions .. 19
3.2 Creating an HTML Page ... 20

Specifying Parameters .. 22
Loading the Web Page ... 22
iii

iv • Contents
3.3 Publishing Files to the MapleNet Server 22
Using MapleNet Publishing Scripts ... 22
Example Procedure: How to Create and Publish a JAR File 23
Using the MapleNet Publisher ... 25

3.4 Accessing Published Content .. 27
Developing JavaServer Pages for MapleNet 29

In this chapter ... 29
4.1 Prerequisites .. 29
4.2 Creating MapleNet JSP Content .. 29
4.3 Page Setup.. 30
4.4 Using Maple Tags .. 30

Initialization Tag ... 31
Statement Tag ... 31
Code Tag .. 34
Assign Tag .. 35
Plot Tag .. 35
Release Tag .. 35

4.5 Examples .. 36
Integration Example ... 36
Plot Example .. 38

4.6 Publishing JSP Content to the MapleNet Server 39
Using MapleNet Publishing Scripts ... 39
Example Procedure: How to Create and Publish a JAR File 40
Using the MapleNet Publisher ... 42

4.7 Accessing Published JSP Content... 43
Developing Worksheets for MapleNet .. 45

In this chapter ... 45
5.1 Writing Worksheets for Use on MapleNet...................................... 45

Tips to Improve Worksheet Layout .. 46
Tips to Improve Worksheet Performance 46

5.2 Client Considerations .. 47
Browser support .. 47
Memory Limitations .. 47
Delay on First Use ... 47

5.3 Server Considerations.. 48
5.4 Customization of the MapleNet Worksheet Interface.................... 48
5.5 Publishing Worksheets to the MapleNet Server 48
5.6 Accessing Published Worksheets .. 48

Appendix A .. 51

1 Introduction

The MapleNet™ Publisher’s Guide provides instructions and examples for the
following.

• Installing MapleNet Publisher software to your computer.
See Installing MapleNet Publisher on page 2.

• Developing Java™ -based applets that communicate with the MapleNet
server, including:

• Writing a Java-based Applet
• Compiling Java Code
• Creating a JAR File that Contains a Manifest
• Creating an HTML Page
• Publishing Files to the MapleNet server
• Accessing Published Content

See Developing Java-based Applets for MapleNet on page 5.
• Developing Maplet™ Applications for MapleNet, including:

• Writing a MapleNet-Compliant Maplet
• Creating an HTML Page
• Publishing to the MapleNet server
• Accessing Published Content

See Developing Maplet Applications for MapleNet on page 19.
• Developing JavaServer Pages™ for MapleNet, including:

• Prerequisites
• Creating MapleNet JSP Content Overview
• Page Setup
• Using Maple Tags
• Examples
• Publishing JSP Content to the MapleNet server
• Accessing Published JSP Content

See Developing JavaServer Pages for MapleNet on page 29.
• Developing Worksheets for MapleNet, including:

• Writing Worksheets
• Client Considerations
1

2 • Introduction
• Server Considerations
• Customization of the MapleNet Worksheet Interface
• Publishing Worksheets to the MapleNet Server
• Accessing Published Worksheets

See Developing Worksheets for MapleNet on page 45.

1.1 Prerequisites

Required
• Java 2 Software Development Kit (J2SDK),1.4.2
• Java 2 Runtime Environment (J2RE), 1.4.2
• Maple 10

Note: If you do not have SDK and J2RE installed, visit Sun Microsystems, Inc. at
http://java.sun.com/j2se/ Web page to download and install the latest version of
Java 1.4.2. Java versions 1.4.2_06 and 1.4.2_07 have known issues and are not
supported.

Recommended
• Java development environment for developing Java applets
• Web page development environment for creating HTML pages

1.2 Installing MapleNet Publisher

The publisher component is located in the Publisher directory on your CD.
Copy this directory to your network or to another CD for distribution.

This component is intended to be installed on computers where MapleNet
content is to be authored. It is already installed on the MapleNet server.

To install the publisher component of the MapleNet software:

• Double-click the WindowsPubInstall.exe file (Windows) or run the
<UNIXplatform>PubInstall.bin file (UNIX) and follow the on-screen
instructions.

1.3 General Notes • 3
When finished, the directory structure will be as follows.

Note: To access the script files from any directory, the bin directory must be
added to the path environment variable.

1.3 General Notes

• The PearlServer prefixes commands to Maple with printlevel:=0 to
suppress extraneous output. When creating procedures, keep in mind that
the default printlevel is set to 0.

• To all MapleNet users, version 2.5 and earlier:

If you package your applets in your own jar files, then you must update
your manifest extension version information as shown in Chapter 2.4:
Creating a JAR File that Contains a Manifest on page 9, so that your
applets will access the newer version of maplenetclient.jar.

Also note the change in the archive attribute of HTML files in Chapter 2.5:
Creating an HTML Page on page 11. You will need to update your
published HTML pages.

• To MapleNet users, version 1.3 and earlier:

Due to a restructuring of Java classes throughout all Maplesoft products,
the MapleNet APIs for the MapleNet client code have been moved to a
different package. The package com.maplesoft.client.* is now renamed
to com.maplesoft.maplenet.client.*

Therefore, any imports in your current applets must be changed to point
at com.maplesoft.maplenet.client.* and recompiled.

Directory Description

bin Location of batch files required for bundling and
publishing content

doc Location of Javadoc files describing the MapleNet
classes, sample Java and HTML files, and the
publisherguide.pdf file

jar Location of Java code files

4 • Introduction

2 Developing Java-based Applets for
MapleNet

In this chapter
• Developing Java-based applets that communicate with the MapleNet

Server
• Compiling applet code
• Creating a JAR file that contains a manifest
• Creating an HTML page that references applets
• Publishing to the MapleNet server
• Accessing published applets

2.1 Developing Java-based Applets

To create content for publication on the MapleNet server, complete the
following tasks.

1. Write an applet that communicates with the MapleNet server.
See Writing Java-based Applets on page 6.

2. Compile the Java code.
See Compiling Java Code on page 9.

3. Create a JAR file that contains a manifest.
See Creating a JAR File that Contains a Manifest on page 9

4. Create an HTML page that references the applet.
See Creating an HTML Page on page 11.

Important Note to Previous MapleNet Users: Prior to MapleNet, Release 2.0, your
applets used the Java package com.maplesoft.client.*, for example, class
com.maplesoft.client.MapleStatement. Due to the repackaging of Java classes
within all Maplesoft products, the classes in com.maplesoft.client.* are now found
in the package com.maplesoft.maplenet.client.* The imports in your existing
applets must be changed and recompiled to work in MapleNet, Release 2.5 and
higher.
5

6 • Developing Java-based Applets for MapleNet
2.2 Writing Java-based Applets

The following Sample Integration Applet (Figure 1) requires a user to enter a
UserID, Password, and expression. By clicking Calculate, a request is sent to the
MapleNet server to integrate the equation. The result is displayed in the
Result textbox. This applet illustrates how requests are passed to the
MapleNet server. The input and output are text-based Standard Maple
syntax.

Figure 1 Sample Integration Applet

Passing Requests to MapleNet The Sample Integration Applet Code
(Listing 1) provides the section of code that performs the connection with
MapleNet. In this example, the computer name is derived from the Web page
that contains the applet during the initialization phase of the applet, which is
stored in the host string variable. The complete code for this example is in the
source file integration.java, which is available in the doc/PublisherGuide
folder created during installation.

 Listing 1 Sample Integration Applet Code

//Routine to take the input expression and
//send it to the MapleNet Server
//using the MapleStatement class

void do_calc (ActionEvent e) {

1 //Erase current answer
TF_Result.setText(“ ”);

2.2 Writing Java-based Applets • 7
2 //Retrieve the expression
String expression = TF_Expression.getText();

//If there is an expression, process it
if (expression.length () > 0) {

3 //Need user and password
String user = TF_Username.getText () ;
String pswd = TF_Password.getText () ;

4 //Must encapsulate the ‘execute()‘ method in a try/catch
//block
try {

5 //Create the host connection. Will use the default MapleNet port
HostInfo hostinfo = new HostInfo(host);
//Create the user login object
UserInfo userinfo = new UserInfo(user, pswd);

6 //Create the MapleStatement that will connect to the server
MapleStatement stmnt = new MapleStatement(hostinfo, userinfo);

7 //Encapsulate the expression into maple integration form
String question = “int(”+ expression + “, x)”;

8 //Get MapleNet server to process the question
String answer = stmnt.execute(question);
//Verify that an answer was retrieved
if (answer==null || answer.length() <= 0) {

//No answer - check the XML returned from the server
answer = “Error: “ +stmnt.getXMLString();

}

9 //Display the result
TF_Result.setText(answer);

} catch (Exception ex) {

//Catch all exceptions here
//MapleStatement.execute will throw
// MapleStatementException - usually syntax error in question
// MapleException - server connection or login errors
System.out.println(“do_calc exception = ” + ex.toString());

}

//Put keyboard focus back to expression box
TF_Expression.setSelectionStart (0);
TF_Expression.setSelectionEnd(equation.length());
TF_Expression.requestFocus();

} else {

// No expression specified
Toolkit.getDefaultToolkit() .beep();

}
}

8 • Developing Java-based Applets for MapleNet
Sequence of Events When the user clicks the Calculate button on the
Sample Integration Applet (Figure 1), the do_calc() routine is invoked with
the following sequence of events.

1. The Result textbox is set to blank.

2. The expression is extracted from the Enter text box.

3. The username and password are obtained from the appropriate text boxes.

4. A try/catch block is used to catch any exceptions that are raised when
communicating with the MapleNet server.

5. The HostInfo and UserInfo objects are created. These objects contain
connection information.

6. A MapleStatement object is created using the HostInfo and UserInfo
objects. Note that this step creates only the object. The actual connection
to the server is not made until the MapleStatement execute method is
used.

7. The actual request for the server is built using the Maple syntax for
integration of the expression from event 2.

8. The question is passed to the server using the MapleStatement execute
method. The result is stored in the String variable answer. Note that
any error from the server is raised as an exception. If an exception occurs,
it is handled in the catch() portion of code.

9. The answer is displayed in the Result text box.

Maple Notes
• To pass multiple questions to the server, you can build a string array

containing the questions and pass them to the execute method. This
method returns a string array of resulting answers corresponding to each
question.

• Expression sequences cannot be rendered in MathML. Therefore, the
output for any Maple command you are using that returns an expression
sequence (for example, solve) must be converted to a list if you want to
render it in MathML. If you do not convert it, only the first element of the
expression sequence will be displayed.

2.3 Compiling Java Code • 9
2.3 Compiling Java Code

Compiling the applet code with a Java compiler produces an
integration.class file. This class file contains the executable code for the
applet. To use the executable code, create an HTML page that references the
class as an applet.

The MapleNet JAR files must be included in the classpath argument of the
compiler. For a complete list of necessary JAR files, see Appendix A on
page 51. Listing 2 illustrates how to compile a Java class named
integration.java.

 Listing 2 Compiling integration.java

On Windows:

javac -classpath maplenetclient-client.jar;maplenetclient-freehep.jar;maplenetclient-
index.jar;maplenetclient-maplenet.jar;maplenetclient-maplets.jar;maplenetclient-
mathdoc.jar;maplenetclient-mathdoc2.jar;maplenetclient-misc.jar;maplenetclient-
openviz2.jar;maplenetclient-plot.jar;maplenetclient-url.jar;maplenetclient-
util.jar;maplenetclient-utilcodepage.jar;maplenetclient-webeq3.jar integration.java

On other platforms (Linux, UNIX and Macintosh):

javac -classpath maplenetclient-client.jar:maplenetclient-freehep.jar:maplenetclient-
index.jar:maplenetclient-maplenet.jar:maplenetclient-maplets.jar:maplenetclient-
mathdoc.jar:maplenetclient-mathdoc2.jar:maplenetclient-misc.jar:maplenetclient-
openviz2.jar:maplenetclient-plot.jar:maplenetclient-url.jar:maplenetclient-
util.jar:maplenetclient-utilcodepage.jar:maplenetclient-webeq3.jar integration.java

Notes:

1. The previous commands assume that integration.java file and the jar
files are in the same directory. If not, classpath must be changed
appropriately.

2. Path separator character is a semi-colon (;) in Windows and a colon (:) on
other platforms.

Important note to previous MapleNet users: In earlier versions, all MapleNet
client code was packaged in a single JAR file (maplenetclient.jar). In MapleNet 10,
the code is separated into several JAR files, to improve download efficiency. To be
compatible with MapleNet 10, your existing code must be recompiled with these
new JAR files.

2.4 Creating a JAR File that Contains a Manifest

The Java Extension Mechanism is used to distribute the maplenetclient.jar
file that is stored on the Web server. If you reference the maplenetclient.jar
file in the manifest of the JAR file that contains the compiled code,
maplenetclient.jar will be installed automatically when required.

10 • Developing Java-based Applets for MapleNet
To implement this, you need to first create a manifest, then create a JAR file
that includes both this manifest and the compiled class files for your applet,
and then reference this JAR file in the .html file.

Creating a Manifest
To create the manifest, you need to know the URL path to the
maplenetclient.jar in your site's Web root directory, for example,
http://mysite.com/maplenet/jar/maplenetclient.jar. If you do not know this
information, ask your system administrator.

Create a text file, for example, mymanifest.txt, that contains the following
lines.

Extension-List: maplenetclient

maplenetclient-Extension-Name: maplenetclient

maplenetclient-Specification-Vendor: Waterloo Maple Inc.

maplenetclient-Specification-Version: 10

maplenetclient-Implementation-Vendor: Maplesoft

maplenetclient-Implementation-Vendor-Id: com.maplesoft.maplenet

maplenetclient-Implementation-Version: 10

maplenetclient-Implementation-URL: http://mysite.com/maplenet/jar/maplenetclient.jar

where the URL specified in the last line is the path to the
maplenetclient.jar in your site's Web root directory.

Note: If your Web server, for example, Tomcat or Apache, is running on a port
other than 80, such as 8080, you must change the URL to include the port
number. For example, http://mysite.com:8080/maplenet/jar/maplenetclient.jar

Important note to previous MapleNet users: Note the change in version
number, Implementation-Vendor and Implentation-Vendor-ID in the manifest on
page 10.

When this text file is created and the class files for the applet are compiled,
you can create the JAR file that will be referenced in the .html file.

Creating a JAR File
Use the following command to create a JAR file, for example, myapplet.jar,
that contains the manifest and the required class files. This example assumes
the manifest file and the class files are both in the current directory.

jar -cmf mymanifest.txt myapplet.jar *.class

2.5 Creating an HTML Page • 11
where mymanifest.txt is the manifest file created in Creating a Manifest on
page 10, myapplet.jar is the name of the JAR file being created, and *.class
is used to include all class files in the present directory

For some classes in the API to be executed (PlotComponent,
mathmlEquation and mathmlEditEquation), the application jar file must
be signed for appropriate permissions on the client machine. For complete
instructions on how to sign a jar file, refer to
http://java.sun.com/docs/books/tutorial/security1.2/toolsign/index.html.

Once this JAR file is created (and signed, if necessary), specify it in the .html
file, as shown in the following section.

2.5 Creating an HTML Page

Before you can publish to the MapleNet server, you must create an HTML
page that references the compiled Java code (the .class file) as an applet.

The following Integration.html sample code (Listing 3 on page 11) illustrates
how to build a page for Microsoft® Internet Explorer® and Netscape®.

Note: Java applets that require a Java version greater than 1.1 must use the Java
Plugin. Use the <object> tag in Internet Explorer and the <embed> tag in
Netscape. For a complete discussion of setting up Web pages for simultaneous
Internet Explorer and Netscape support, refer to
http://java.sun.com/products/plugin/1.3/docs/intranet.html

 Listing 3 Integration.html

<html>

<head>

<title>

Integration Example

</title>

</head>

<body>

<center>

<H2>Integration Applet will appear below in a Java-enabled browser</H2>

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" width="400" height="300"
align="middle" >

 <param name="type" value="application/x-java-applet;version=1.4" />

 <param name="CODEBASE" value = "./" />

 <param name="CODE" value = "integration.class" />

 <param name="NAME" value = "IntegrationApplet" />

12 • Developing Java-based Applets for MapleNet
<param name="ARCHIVE" value = "myapplet.jar,/maplenet/jar/maplenetclient-

index.jar"1 />

<param name="expression" value="3*x^2 + 2*x +1" />

 <comment>

 <embed type="application/x-java-applet;version=1.4"

width="400"

height="300"

align="middle"

code="integration.class"

codebase="./"

archive= "myapplet.jar,/maplenet/jar/maplenetclient-index.jar
1
"

expression="3*x^2 + 2*x +1">

 <noembed> </comment> Error Java 1.4 not supported </noembed>

 </embed>

</object>

</center>

</body>

</html>

If you choose to use an applet tag in your Web site, the parameters must be
specified as shown in Listing 4.

 Listing 4 Applet Parameter Syntax

<applet

width="400"

height="300"

align="middle"

code=" integration.class "

codebase="./"

archive=" myapplet.jar, /maplenet/jar/maplenetclient-index.jar" >

<param name=" expression " value="3*x^2 + 2*x +1"/>

</applet>

1.Relative path to maplenetclient-index.jar must be specified. Ensure that all
maplenetclient-*.jar files listed in Appendix A are in the same directory as maplenetclient-
index.jar.

2.5 Creating an HTML Page • 13

l

t
l
Specifying Parameters
In the .html file, specify the parameters listed in Table 1.

Table 1 HTML File Parameters

For this example, integration.java, you can add optional input parameters
in the Java source code, as listed in Table 2.

Table 2 Java Source Code File Parameters

Loading the Web Page
When the Web page loads, it runs the applet specified by the code parameter.
This code accesses the MapleNet server using the classes indexed in the
maplenetclient-index.jar file. This file and all other files listed in Appendix
A on page 51 must be accessible to the Web browser.

Once the applet is compiled and the Web page is created, publish the
associated files (.html, .java, and .jar) to the MapleNet server.

Parameter Description

height Specifies the size of the applet on the Web page.

width Specifies the size of the applet on the Web page.

codebase Specifies the directory from which to load the class
file.

code Specifies the class of the applet. In the example,
integration.class is specified.

archive Specifies maplenetclient-index.jar and additiona
JAR files that are required, for example,
myapplet.jar.

Parameter Description

host Specifies the name of the MapleNet server. The
default is the name of the server for the Web page.

expression Specifies the initial value for the Enter Expression tex
box. The applet does not perform the integration unti
the Calculate button is clicked. If not specified, the
field is blank.

14 • Developing Java-based Applets for MapleNet
2.6 Publishing Files to the MapleNet Server

The Web page, source code, and compiled code files can be published to the
Web server directly or using one of the following methods.

• Using MapleNet Publishing Scripts on page 14 (command line)
• Using the MapleNet Publisher on page 16 (graphical interface)

Using MapleNet Publishing Scripts
MapleNet publishing scripts bundle and send files to the server to be installed
in a location accessible by the client.

To publish files to the server:

1. Place the files required for publishing in the same subdirectory.

2. Run the CreateJar (createjar in UNIX) script to wrap the contents of the
subdirectory into a JAR file. A JAR file is a Java version of a zip file. As
such, it can be viewed with a zip program such as WinZip® 7.0.

3. Run the PublishJar (publishjar in UNIX) script to publish the contents
of the JAR file on the server.

For an example procedure, see Example Procedure: How to Create and Publish
a JAR File on page 14.

Example Procedure: How to Create and Publish a JAR File
The following example files are used to illustrate the procedure for moving
files to the server.

1. Create a JAR file using the example files.

Windows

Run the CreateJar.bat file from the Projects directory.

Directory or File Description

\Projects\Tutorial Main directory

\Projects\Tutorial\integration.html Web page

\Projects\Tutorial\integration.java Source code for the applet to be
contained in the page

\Projects\Tutorial\integration.class Compiled Java code

2.6 Publishing Files to the MapleNet Server • 15
cd Projects
CreateJar tutor1.jar Tutorial

where tutor1.jar is the JAR file to be created and Tutorial is the subdi-
rectory to be searched for source files.

The CreateJar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

UNIX

Run the createjar script from the Projects directory.
cd Projects
createjar tutor1.jar Tutorial

where tutor1.jar is the JAR file to be created and Tutorial is the subdi-
rectory to be searched for source files.

The createjar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

2. Verify the contents of the tutor1.jar file using the jar tool from the
J2SDK. Enter the command:
jar -tf tutor1.jar

All directories/files contained in the jar file are displayed. The contents
will resemble the following.
/Projects>jar -tf tutor1.jar

META-INF/

META-INF/MANIFEST.MF

Tutorial/

Tutorial/integration$1.class

Tutorial/integration.class

Tutorial/integration.html

Tutorial/integration.java

/Projects>

If the contents are not similar to the above listing, there was a problem
with the createjar step.

3. Publish the JAR file on the server. The command parameters are
described in Table 3.

Windows

Run the PublishJar.bat file.
PublishJar user password jarfile destination

UNIX

Run the publishjar command.

publishjar user password jarfile destination

16 • Developing Java-based Applets for MapleNet
For example,
publishjar admin spiff tutor1.jar //Servername/Projects/tutor1.jar

The server recreates all the files and directories contained in the JAR file. For
example, the files are extracted to \Projects\Tutorial on the server.

Table 3 Command Parameters

Note: You can publish to the server only when the MapleNet server and the Web
server are running. For more information, refer to the MapleNet Installation Guide.

Using the MapleNet Publisher
The MapleNet Publisher allows you to select the source content, either an
archived file or folder, and to specify a target folder.

You must know the following information.

• The URL of the MapleNet server and the port on which the server listens.
• The MapleNet user account and password that has authority to publish

content to the Web server.
• The location of the files to be archived or the archive, if previously created

using another method.
• The target folder from which the archive is to be extracted.

To launch the MapleNet Publisher:
In the bin directory, double-click the maplenetpublisher.bat file (Windows)
or run the maplenetpublisher file (UNIX). The MapleNet Publisher dialog
opens.

Parameter Description

user User name already defined on the
server to which you are publishing.

password Password for the user.

jarfile Name of the JAR file.

destination Name of the remote server and
directory where the JAR file is sent
and unwrapped. The directory will
be placed in the Web server’s root
directory.

Note: The publisher must have
write permission to this directory.

2.6 Publishing Files to the MapleNet Server • 17
• If you have an archive, follow the instructions in To publish an archive.
• If you must create an archive, follow the instructions in To create an

archive and then To publish an archive.

To create an archive:

1. In the MapleNet Publisher dialog, click Create Archive. The Jar Create
Utility/Package Directory dialog opens.

2. Enter a directory and click Next.
(Optional) Click Browse to find and select a directory.

3. In the Jar Create Utility/Create Archive dialog, enter the archive filename,
and click Finish. A message is displayed indicating that the archive
filename extension has been changed to “jar”.

To publish an archive:

1. In the MapleNet Publisher dialog, click Publish Archive.The MapleNet
Publisher/Choose Archive dialog opens.

2. Enter (or Browse for) an archive filename. The contents of the selected
archive (.jar file) are listed in the Archive Contents section of the dialog.

To review the code of a particular HTML file in the Archive Contents,
select an .html file and click Explore. The Zip File Browser dialog opens,
displaying the HTML code. To return to the previous dialog, close the Zip
File Browser.

3. Once you have selected an archive, click Next. The MapleNet
Publisher/MapleNet Server dialog opens.

4. Enter the Name of the MapleNet server, for example, mysite.com. The
Port number field is automatically populated with the default 14444.

5. Enter the User Name and Password. The default Admin password is
spiff.

6. Click Next. The MapleNet Publisher/Deploy dialog opens. Enter the path
and destination jar filename, for example, enter /Projects/tutor1.jar.
The Publisher places the tutor1.jar on the server in the /Projects
directory and then extracts all the files from tutor1.jar into this
directory.

7. Click Finish. The MapleNet Publisher closes.

18 • Developing Java-based Applets for MapleNet
2.7 Accessing Published Content

Demonstrating with the example files of the previous section, a user can
access the published Web pages using the following URL.

http://Servername/maplenet/Projects/Tutorial/integration.html

The path is based on the destination parameter specified in the PublishJar
(publishjar in UNIX) command. (See Table 3.)

3 Developing Maplet Applications for
MapleNet

In this chapter
• Writing a Maplet Application Compliant with MapleNet
• Creating an HTML Page (that references a Maplet application)
• Publishing files to the MapleNet Server
• Accessing Published Content

3.1 Writing a Maplet Application Compliant with
MapleNet

When writing a Maplet application for MapleNet, follow these guidelines.

• Ensure that the last line in the file is the Maplets:-Display command.
• Save the file as a .maplet file.
• It is recommended that you use the waitforresult=’false’ setting in

your Evaluate statements.
• Expression sequences cannot be rendered in MathML. Therefore, the

output for any Maple command you are using that returns an expression
sequence (for example, solve) must be converted to a list if you want to
render it in MathML. If you do not convert it, only the first element of the
expression sequence will be displayed.

Restrictions
When using Maplet applications in MapleNet, consider the following
restrictions.

• You cannot open files.
• You cannot open a Maplet application from another Maplet application.
19

20 • Developing Maplet Applications for MapleNet
3.2 Creating an HTML Page

Before you can publish to the MapleNet server, you must create an HTML
page that references the saved .maplet file.

The following sample code (Listing 5) illustrates how to build a page for
Internet Explorer and Netscape.

Note: Java applets that require a Java version greater than 1.1 must use the Java
Plug-in. Use the <object> tag in Internet Explorer and the <embed> tag in
Netscape. For a complete discussion of setting up Web pages for simultaneous
Internet Explorer and Netscape support, refer to
http://java.sun.com/products/plugin/1.3/docs/intranet.html

 Listing 5 Maplet Application HTML Code

<head>

<title>

Maplet Application Test Page

</title>

</head>

<body>

This Web page contains an applet that will call the Maplet application specified below.
The Maplet application will appear in a separate window.

<center>

 <object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" width="400"
height="300" align="middle" >

 <param name="CODEBASE" value = "." />

 <param name="CODE" value = "com.maplesoft.maplenet1.maplets.MapletLoader.class"
/>

 <param name="ARCHIVE" value = "/maplenet/jar/mapletloader.jar,
/maplenet/jar/maplenetclient-index.jar2" />

 <param name="NAME" value = "plot_02_x" />

 <param name="mapleFile" value="mytest.maplet" />

 <param name="user" value="client" />

 <param name="password" value="demopass" />

 <comment>

1.Prior to MapleNet, Release 2.0, Maplet applications were loaded via the class
com.maplesoft.client.maplets.MapletLoader. This class is now deprecated and must be replaced
by com.maplesoft.maplenet.maplets.MapletLoader

2.Ensure that all maplenetclient-*.jar files (see the complete list of JAR files in Appendix A)
are in the same directory as maplenetclient-index.jar file.

3.2 Creating an HTML Page • 21
 <embed type="application/x-java-applet;version=1.4"

 width="400"

 height="300"

 align="middle"

 code="com.maplesoft.maplenet.maplets.MapletLoader.class"

 codebase="./"

 archive="/maplenet/jar/mapletloader.jar,/maplenet/jar/maplenetclient-
index.jar1"

 mapleFile="mytest.maplet"

 user="client"

 password="demopass">

 <noembed> </comment> Error Java 1.4 not supported </noembed>

 </embed>

 </object>

</center>

</body>

</html>

If you choose to use an applet tag in your Web site, the parameters must be
specified as shown in Listing 6.

 Listing 6 Applet Parameter Syntax

<applet

width="400"

height="300"

align="middle"

code=" com.maplesoft.maplenet.maplets.MapleLoader.class"

codebase="./"

archive=" /maplenet/jar/mapletloader.jar, /maplenet/jar/maplenetclient-index.jar
1
" >

<param name=" mapleFile" value="mytest.maplet"/>

<param name="user" value="client"/>

<param name="password" value="demopass"/>

</applet>

1.Ensure that all maplenetclient-*.jar files (see the complete list of JAR files in Appendix A)
are in the same directory as maplenetclient-index.jar file.

22 • Developing Maplet Applications for MapleNet
Specifying Parameters
In the .html file, specify the parameters listed in Table 4.

Table 4 HTML File Parameters

Loading the Web Page
When the Web page loads, it runs the MapletLoader applet, which in turn
starts the Maplet application specified by the mapleFile parameter. This code
accesses the MapleNet server using the classes contained in the JAR files
(listed in Appendix A on page 51), indexed by the maplenetclient-index.jar
file. These files must be accessible to the Web browser.

Once the Maplet application and the Web page are created, publish them to
the MapleNet server.

3.3 Publishing Files to the MapleNet Server

The Web page and Maplet application file can be published to the Web server
directly or using one of the following methods.

• Using MapleNet Publishing Scripts on page 22 (command line)
• Using the MapleNet Publisher on page 25 (graphical interface)

Using MapleNet Publishing Scripts
MapleNet publishing scripts bundle and send files to the server to be installed
in a location accessible by the client.

Parameter Description

height Specifies the size of the Maplet application on the
Web page.

width Specifies the size of the Maplet application on the
Web page.

codebase Specifies the directory from which to load the class
file.

code Specifies the required class file. For Maplet
applications, MapletLoader class is always called.

archive Specifies JAR files that are required, for example,
mapletloader.jar and maplenetclient-index.jar
Note: Ensure the path to jar files is correct for your system.

mapleFile Specifies the Maplet application file.

3.3 Publishing Files to the MapleNet Server • 23
To publish files to the server:

1. Place the files required for publishing in the same subdirectory.

2. Run the CreateJar (createjar in UNIX) script to wrap the contents of the
subdirectory into a JAR file. A JAR file is a Java version of a zip file. As
such, it can be viewed with a zip program such as WinZip 7.0.

3. Run the PublishJar (publishjar in UNIX) script to publish the contents
of the JAR file on the server.

For an example procedure, see Example Procedure: How to Create and Publish
a JAR File.

Example Procedure: How to Create and Publish a JAR File
The following example files are used to illustrate the procedure for moving
files to the server.

1. Create a JAR file using the example files.

Windows

Run the CreateJar.bat file from the Projects directory.

cd Projects
CreateJar tutor1.jar Tutorial

where tutor1.jar is the JAR file to be created and Tutorial is the subdi-
rectory to be searched for source files.

The CreateJar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

UNIX

Run the createjar script from the Projects directory.

cd Projects
createjar tutor1.jar Tutorial
where tutor1.jar is the .jar file to be created and Tutorial is the subdi-
rectory to be searched for source files.

Directory or File Description

\Projects\Tutorial Main directory

\Projects\Tutorial\integration.html Web page

\Projects\Tutorial\integration.maplet Source code for the Maplet
application to be contained in
the page

24 • Developing Maplet Applications for MapleNet
The createjar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

2. Verify the contents of the tutor1.jar file using the jar tool from the
J2SDK. Enter the command:
jar -tf tutor1.jar

All directories/files contained in the jar file are displayed. The contents
will resemble the following.
/Projects>jar -tf tutor1.jar

META-INF/

META-INF/MANIFEST.MF

Tutorial/

Tutorial/integration.html

Tutorial/integration.maplet

/Projects>

If the contents are not similar to the above listing, there was a problem
with the createjar step.

3.3 Publishing Files to the MapleNet Server • 25
3. Publish the JAR file on the server. The command parameters are
described in Table 5.

Windows

Run the PublishJar.bat file.
PublishJar user password jarfile destination

UNIX

Run the publishjar command.

publishjar user password jarfile destination

For example,
publishjar admin spiff tutor1.jar //Servername/Projects/tutor1.jar

The server recreates all the files and directories contained in the JAR file. For
example, the files are extracted to \Projects\Tutorial on the server.

Table 5 Command Parameters

Note: You can publish to the server only when the MapleNet server and the Web
server are running. For more information, refer to the MapleNet Installation Guide.

Using the MapleNet Publisher
The MapleNet Publisher allows you to select the source content, either an
archived file or folder, and to specify a target folder.

You must know the following information.

• The URL of the MapleNet server and the port on which the server listens.

Parameter Description

user User name already defined on the
server to which you are publishing

password Password for the user

jarfile Name of the JAR file

destination Name of the remote server and
directory where the JAR file is sent
and unwrapped. The directory will
be placed in the Web server’s root
directory.

Note: The server must have
write permission to this directory.

26 • Developing Maplet Applications for MapleNet
• The MapleNet user account and password that has authority to publish
content to the Web server.

• The location of the files to be archived, or the archive if previously created
using another method.

• The target folder from which the archive is to be extracted.

To launch the MapleNet Publisher:
In the bin directory, double-click the maplenetpublisher.bat file (Windows)
or run the maplenetpublisher file (UNIX). The MapleNet Publisher dialog
opens.

• If you have an archive, follow the instructions in To publish an archive.
• If you must create an archive, follow the instructions in To create an

archive and then To publish an archive.

To create an archive:

1. In the MapleNet Publisher dialog, click Create Archive. The Jar Create
Utility/Package Directory dialog opens.

2. Enter a directory and click Next.
(Optional) Click Browse to find and select a directory.

3. In the Jar Create Utility/Create Archive dialog, enter the archive filename,
and click Finish. A message is displayed indicating that the archive
filename extension has been changed to “jar”.

To publish an archive:

1. In the MapleNet Publisher dialog, click Publish Archive. The MapleNet
Publisher/Choose Archive dialog opens.

2. Enter (or Browse for) an archive filename. The contents of the selected
archive (.jar file) are listed in the Archive Contents section of the dialog.

To review the code of a particular HTML file in the Archive Contents,
select an .html file and click Explore. The Zip File Browser dialog opens,
displaying the HTML code. To return to the previous dialog, close the Zip
File Browser.

3. Once you have selected an archive, click Next. The MapleNet
Publisher/MapleNet Server dialog opens.

4. Enter the Name of the MapleNet server, for example, mysite.com. The
Port number field is automatically populated with the default 14444.

3.4 Accessing Published Content • 27
5. Enter the User Name and Password. The default user name is admin
and password is spiff.

6. Click Next. The MapleNet Publisher/Deploy dialog opens. Enter the path
and destination jar filename, for example, enter /Projects/tutor1.jar.
The Publisher places the tutor1.jar on the server in the /Projects
directory and then extracts all the files from tutor1.jar into this
directory.

7. Click Finish. The MapleNet Publisher closes.

3.4 Accessing Published Content

Demonstrating with the example files of the previous section, a user can
access the published Web pages using the following URL.

http://Servername/maplenet/Projects/Tutorial/integration.html
The path is based on the destination parameter specified in the PublishJar
(publishjar in UNIX) command. (See Table 5.)

28 • Developing Maplet Applications for MapleNet

4 Developing JavaServer Pages for
MapleNet

MapleNet JavaServer Pages (JSP™) allow you to use HTML pages to display
Maple calculations. Maple expressions can be inserted in Web page sources
and rendered within Web browsers.

In this chapter
• Prerequisites
• Creating MapleNet JSP Content
• Page Setup
• Using Maple Tags
• Examples
• Publishing JSP Content to the MapleNet Server
• Accessing Published JSP Content

4.1 Prerequisites

The server must support the use of JavaServer Pages. For example, a
compatible server is Tomcat 4.1.

4.2 Creating MapleNet JSP Content

To display Maple content on the Web you must add special tags to Web page
sources. The tags follow normal HTML tag conventions in that they are either
of the single tag form

<tag ... tag parameters .../>

or matched opening and closing tags of the form

< tag ... tag parameters ...>

 ... data ...

</tag>

For example, in static HTML pages most of the page text is enclosed in html
and body tags, as in the following.

<html>
29

30 • Developing JavaServer Pages for MapleNet
 <body>

 This is a simple page.

 </body>

</html>

To begin creating MapleNet JSP content, follow the instructions in the Page
Setup and Using Maple Tags sections of this chapter.

4.3 Page Setup

The server must recognize Maple specific tags. All tags in the page are
processed in the order encountered on the source pages.

1. Add a taglib directive before the <html> tag at the top of the document.
This allows the server to recognize Maple specific tags.
<%@ taglib prefix="maple" uri="/maplemath.tld" %>

where
• <%@ identifies this as a JSP directive
• taglib specifies the name of the directive
• prefix="maple" states that maple is the tag name, for example

<maple:init ... >

• uri specifies that the server use the uniform resource identifier (uri)
"/maplemath.tld" to locate the Tag Library Descriptor

Technical Note: In the default install, the WEB-INF/web.xml file instructs the JSP
engine to map the /maplenet.tld uri to the WEB-INF/tlds/maplenet.tld file)

2. Add a page tag following the taglib directive. This allows the server to
maintain user data between pages requested by the user.

<%@ page session="true" %>

where
• <%@ identifies this as a JSP directive
• page specifies the name of the directive
• session="true" indicates the server will store data for the entire session

4.4 Using Maple Tags

This section describes the init, statement, code, assign, plot, and release
tags.

4.4 Using Maple Tags • 31
Initialization Tag
Add an init (initialization) tag to indicate how the Maple kernel is to be used.
Use the following syntax.

<maple:init scope="[tag|page|request|session]"
debug="[false|true]" />

where
• maple:init specifies the name of the tag. This tag must occur before any

other maple tag. If not, any statement or code tags encountered before the
init tag are executed as if the scope was set to page.

• scope indicates how long the Maple kernel is kept active.

tag specifies that the kernel is used only for the expression(s) within the
current <maple:xxx> tag. Each Maple tag has a new kernel, and no data is
stored between Maple tags.

page specifies that the same kernel is used for all Maple tags encountered
on this page. Once the page is sent to the user's browser, the kernel is
released. Therefore multiple visits by a user to the same page result in a
new kernel on each visit. This frees up the kernel for another user, but no
data is stored for the same user on subsequent visits.

request specifies that the same kernel is used for all Maple tags in a sin-
gle request to the server. A browser request may traverse one or more
source pages.

session specifies that the same kernel is used for all Maple tags processed
by the server for a particular user in a single browser session. Browser
sessions are established by the <%@ page ... > directive.
If the tag <%@ page session="true" %> is encountered in a server, then
the server uses the same session (not Maple session) for this user and
remembers all the users server settings between visits as long as the
browser is active and has not timed out. (Timeout levels are set by the
server administrator).
If the page directive session is true, and the <maple:init ...> scope is
set to session, then a handle to the Maple kernel is stored in the session
data so that the Maple tags can share the same Maple kernel.

• debug, when true, specifies that all <maple:xxx> tags add debugging
information to the output HTML.

Statement Tag
The statement tag executes one or more Maple expressions, with the result of
the expression(s) being inserted directly into the resultant HTML page. The
form of the tag is as follows.

32 • Developing JavaServer Pages for MapleNet
<maple:statement lastline="[false|true]" breakline="[true|false]"
type="[text|plot]" width="value" height="value">

 ... Maple expression ...

 ... Maple expression ...

</maple:statement>

If the result is Maple output, it is inserted as text. If the result is a plot, the
plot is converted to an image, and an HTML tag is inserted in the
page.

Important: Each line in the statement block is executed separately. Therefore, all
the code for control structures, such as if/else and try/catch must be on the same
line. For example:

if (x>0) then s := +1; else s:=-1; end if

• A page can have more than one statement section. If the init tag sets the
scope to session, all statement sections use the same kernel.

• If one or more of the expressions are expected to create a static plot, set
the type parameter to 'plot'. The kernel then generates a plot using the
numeric width and height parameters. For interactive plots, see Plot Tag
on page 35.

• The parameters lastline and breakline are optional. When lastline is
true, all Maple expressions are evaluated within the tag but only the
output generated by the last expression is inserted into the Web page
content. If breakline is true, an HTML break tag,
, is inserted after
the output of each expression, forcing the browser to display each
expression on a new line.

When using both parameters, consider the following inserted into Web
page content.
<maple:statement breakline=... lastline=... >

1+1; 2+2; 3+3;
7;
8;
9;

<maple:statement>

Table 6, “Output in Browser,” on page 33 illustrates how the above input is
displayed in a Web browser based on parameter usage.

4.4 Using Maple Tags • 33
The following illustrates how content is processed and displayed using the
examples given in Table 6.

• If lastline is true and breakline is true, all lines are processed but only
the result of the last line is displayed. Therefore all four lines of data

1+1; 2+2; 3+3;
7;
8;
9;

are sent to Maple, but only the last result is displayed and an HTML

string is appended after the line.

9

• If lastline is true and breakline is false, all lines are processed but
only the result of the last line is displayed. Therefore all four lines of data

1+1; 2+2; 3+3;
7;
8;
9;

are sent to Maple, but only the last result is displayed.

9

• If lastline is false and breakline is true, all lines are processed and
displayed. Therefore all 4 lines of data

1+1; 2+2; 3+3;
7;
8;
9;

are sent to Maple, resulting in MapleNet producing

2 4 6

7

Table 6: Output in Browser

breakline

true false

lastline
true 9 9

false 2 4 6
7
8
9

2 4 6789

34 • Developing JavaServer Pages for MapleNet
8

9

The browser displays this as
2 4 6
7
8
9

• If lastline is false, and breakline is false, all lines are processed and
displayed. Therefore all four lines of data

1+1; 2+2; 3+3;
7;
8;
9;

are sent to Maple, resulting in MapleNet producing

2 4 6
7
8
9

Note that browsers typically ignore white space and so the result is dis-
played as the following.

2 4 6789

Code Tag
The code tag is similar to the <maple:statement ...> tag, but no data is
generated to the output page. This can be used to define common procedures
and data for later use by expressions in the <maple:statement ...> sections.
The form of the tag is as follows.

<maple:code>

 ... Maple expression

 ... Maple expression

</maple:code>

This tag has no parameters. Each expression in the tag body is evaluated by
the Maple kernel.

Note: Unlike the statement block, all expressions are evaluated together. As such,
control structures (if/else, try/catch) can span several lines.

4.4 Using Maple Tags • 35
Assign Tag
The assign tag allows parameters from HTML forms to be passed as variables
to Maple. The form of the tag is as follows.

<maple:assign param="param name" variable="Maple variable"
default="def value" />

where
• param name (required) specifies the identifier of an HTML form parameter

that has an associated value
• Maple variable (required) specifies the name of a variable in Maple. It is

assigned the value of the HTML parameter
• default (optional) specifies the value to assign to a Maple variable if the

parameter is not set

Although the <maple:xxx> tags appear in the source, they do not appear in
the user browser because they are converted by the Maple Tag Library into
content that is consistent with Web pages. The content is the output from the
Maple kernel.

Plot Tag
The plot tag creates an interactive (dynamic image) plot. The form of the tag
is as follows.

<maple:plot width="value" height="value">

Maple_plot_equation</maple:plot>

where
• maple:plot specifies a interactive plot
• width and height specify the numeric parameters to generate the plot
• Maple_plot_equation specifies the plot equation, for example,

plot3d(sin(x^0.5*y^0.5), x=-Pi..Pi,y=-2*Pi..2*Pi,axes=BOXED)

For static plots, see Statement Tag on page 31.

Release Tag
The release tag terminates the JSP connection to Maple, allowing other JSP
sessions to access the Maple server. The form of the tag is as follows.

<maple: release />

36 • Developing JavaServer Pages for MapleNet
This tag will immediately release Maple, regardless of the scope setting in the
init tag. This is the preferred method of freeing Maple for other user
sessions.

4.5 Examples

To understand more about MapleNet JavaServer Pages, review the following
integration.jsp and MaplePlotTest.jsp example code listings.

Integration Example
The following example is similar to the applet example (Listing 3 on page 11)
for performing simple integration. However, it uses only Web page tags and no
client-side Java.

 Listing 7 Integration.jsp

<%@ taglib prefix="maple" uri="/maplemath.tld" %>

<%@ page session="true" %>

<maple:init scope="session" debug="false" />

<maple:assign param="expr001" variable="eqn" default="sin(x)" />

<maple:code>

 doInt := proc()

 global eqn;

 int(eqn, x);

 end proc;

</maple:code>

<html>

 <head>

 <title>

 Sample Integration

 </title>

 </head>

 <body>

 <center>

 <h1>Sample Integration</h1>

 <form method="post" action="Integration.jsp" >

 <table width="50%" >

 <tr>

 <td width="35%">Enter Expression : </td>

4.5 Examples • 37
 <td width="65%">

 <input type="text" size="40" name="expr001"

 value="<maple:statement>eqn</maple:statement>" >

 </td>

 </tr>

 <tr>

 <td width="35%">Result : </td>

 <td width="65%">

 <input type="text" size="40" name="result001"

 value="<maple:statement>doInt()</maple:statement>" >

 </td>

 </tr>

 </table>

 <input type="submit" name="Calculate" value="Submit">

 </form>

 </center>

 <maple:statement type="plot" height="200" width="400">

 plot(eqn, x=0..10)</maple:statement>

 </body>

<maple: release />

</html>

The following discussion refers to Listing 7 on page 36.

• The first tag, <%@ taglib ...%>, establishes that maple is the tag prefix
for Maple calculations.

• The <%@ page ...%> tag sets the server to remember this user for a
session.

• The <maple:init ...> tag specifies that the same kernel is used for this
session and that debugging is off.

Note: If an error arises on the server side while processing of the Maple tags, the
current kernel is released and any state information is lost.

• The <maple:assign ...> tag takes the form parameter, expr001, and
assigns it to the Maple variable, eqn. The first time this page is loaded, the
form has not yet been processed and expr001 is undefined. Therefore the
default value, sin(x), is assigned to the variable, eqn.

• Following this is a <maple:code ...> block. The server passes the
included Maple code directly to the Maple kernel. This block defines a
simple procedure, doInt(), that integrates the expression assigned to
eqn. This procedure is referenced later in the Web page.

38 • Developing JavaServer Pages for MapleNet
• The remainder of the example is an HTML document that has two input
fields inside a <form ...> tag. The action of the form is to invoke the
same Web page, Integration.jsp. The expr001 input field is filled using
a <maple:statement ...> tag to output the value of eqn. The result001
field is filled using a <maple:statement ...> to evaluate the doInt()
procedure that is defined by the code block.

• The release tag terminates the JSP connection to the Maple server.

When the Calculate button is clicked, the form is submitted to the server to be
processed again by Integration.jsp. This time the <maple:assign ...> tag
takes the user input from the expr001 field and assigns it to eqn. The new
value of eqn is integrated and placed in the output page in the result001
field.

Plot Example
The following code provides an example of static and interactive plots.

 Listing 8 MaplePlotTest.jsp

<%@ taglib prefix="maple" uri="/maplemath.tld" %>

<%@ page session="true" %>

<maple:init scope="page" debug="true" />

<maple:assign param="eqn001" variable="plt_eqn" default="plot3d(sin(x^0.5*y^0.5), x=-
Pi..Pi, y=-2*Pi..2*Pi,axes=BOXED)" />

<html>

<head>

<title>

MaplePlotTest

</title>

</head>

<body bgcolor="#ffffc0">

<h1>

Test of Maple Plot Tag

</h1>

Time is <%= new java.util.Date().toString() %>

<center>

 Static Image plot

 <maple:statement type="plot" width="250" height="200"
>plot(cos(4*x),x=0..10)</maple:statement>

</center>

4.6 Publishing JSP Content to the MapleNet Server • 39

<center>

Dynamic Image plot

<maple:plot width="500" height="300" >plt_eqn</maple:plot>

</center>

<center>

<form method="post">

 <input type="text" size="50" name="eqn001" value="plot3d(sin(x^0.5*y^0.5), x=-
Pi..Pi, y=-2*Pi..2*Pi,axes=BOXED)" >

 <input type="submit" name="Submit" value="Submit">

 <input type="reset" value="Reset">

</form>

</center>

<maple:release/>

</body>

</html>

A static plot is displayed above an interactive plot. The user can submit new
values for the interactive plot in an input field.

4.6 Publishing JSP Content to the MapleNet Server

The .jsp application file can be published to the Web server directly or using
one of the following methods.

• Using MapleNet Publishing Scripts on page 39 (command line)
• Using the MapleNet Publisher on page 42 (graphical interface)

Using MapleNet Publishing Scripts
MapleNet publishing scripts bundle and send files to the server to be installed
in a location accessible by the client.

To publish files to the server:

1. Place the files required for publishing in the same subdirectory.

40 • Developing JavaServer Pages for MapleNet
2. Run the CreateJar (createjar in UNIX) script to wrap the contents of the
subdirectory into a JAR file. A JAR file is a Java version of a zip file. As
such, it can be viewed with a zip program such as WinZip 7.0.

3. Run the PublishJar (publishjar in UNIX) script to publish the contents
of the JAR file on the server.

For an example procedure, see Example Procedure: How to Create and Publish
a JAR File.

Example Procedure: How to Create and Publish a JAR File
The following example files are used to illustrate the procedure for moving
files to the server.

1. Create a JAR file using the example files.

Windows

Run the CreateJar.bat file from the Projects directory.

cd Projects
CreateJar tutor1.jar Tutorial

where tutor1.jar is the JAR file to be created and Tutorial is the subdi-
rectory to be searched for source files.

The CreateJar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

UNIX

Run the createjar script from the Projects directory.

cd Projects
createjar tutor1.jar Tutorial
where tutor1.jar is the jar file to be created and Tutorial is the subdi-
rectory to be searched for source files.

The createjar command searches the directory (Tutorial) and all its
subdirectories for source files and then creates the tutor1.jar file in the
Projects directory.

2. Verify the contents of the tutor1.jar file using the jar tool from the SDK.
Enter the command:
jar -tf tutor1.jar

Directory or File Description

\Projects\Tutorial Main directory

\Projects\Tutorial\integration.jsp Web page

4.6 Publishing JSP Content to the MapleNet Server • 41
All directories/files contained in the jar file are displayed. The contents
will resemble the following.
/Projects>jar -tf tutor1.jar

META-INF/

META-INF/MANIFEST.MF

Tutorial/

Tutorial/integration.jsp

/Projects>

If the contents are not similar to the above listing, there was a problem
with the createjar step.

3. Publish the JAR file on the server. The command parameters are
described in Table 7.

Windows

Run the PublishJar.bat file.
PublishJar user password jarfile destination

UNIX

Run the publishjar command.

publishjar user password jarfile destination

For example,
publishjar admin spiff tutor1.jar //Servername/Projects/tutor1.jar

The server recreates all the files and directories contained in the JAR file. For
example, the files are extracted to \Projects\Tutorial on the server.

Table 7 Command Parameters

Note: You can publish to the server only when the MapleNet Server and the Web
Server are running. For more information, refer to the MapleNet Installation Guide.

Parameter Description

user User name already defined on the
server to which you are publishing.

password Password for the user.

jarfile Name of the JAR file.

destination Name of the remote server and
directory where the JAR file is sent
and unwrapped. The directory will
be placed in the Web Server’s root
directory.

Note: The publisher must have
write permission to this directory.

42 • Developing JavaServer Pages for MapleNet
Using the MapleNet Publisher
The MapleNet Publisher allows you to select the source content, either an
archived file or folder, and to specify a target folder.

You must know the following information.

• The URL of the MapleNet server and the port on which the server listens.
• The MapleNet user account and password that has authority to publish

content to the Web server.
• The location of the files to be archived, or the archive if previously created

using another method.
• The target folder from which the archive is to be extracted.

To launch the MapleNet Publisher:
In the bin directory, double-click the maplenetpublisher.bat file (Windows)
or run the maplenetpublisher file (UNIX). The MapleNet Publisher dialog
opens.

• If you have an archive, follow the instructions in To publish an archive.
• If you must create an archive, follow the instructions in To create an

archive and then To publish an archive.

To create an archive:

1. In the MapleNet Publisher dialog, click Create Archive. The Jar Create
Utility/Package Directory dialog opens.

2. Enter a directory and click Next.
(Optional) Click Browse to find and select a directory.

3. In the Jar Create Utility/Create Archive dialog, enter the archive filename,
and click Finish. A message is displayed indicating that the archive
filename extension has been changed to “jar”.

To publish an archive:

1. In the MapleNet Publisher dialog, click Publish Archive. The MapleNet
Publisher/Choose Archive dialog opens.

2. Enter (or Browse for) an archive filename. The contents of the selected
archive (.jar file) are listed in the Archive Contents section of the dialog.

To review the code of a particular HTML file in the Archive Contents,
select an .html file and click Explore. The Zip File Browser dialog opens,
displaying the HTML code. To return to the previous dialog, close the Zip
File Browser.

4.7 Accessing Published JSP Content • 43
3. Once you have selected an archive, click Next. The MapleNet
Publisher/MapleNet Server dialog opens.

4. Enter the Name of the MapleNet server, for example, mysite.com. The
Port number field is automatically populated with the default 14444.

5. Enter the User Name and Password. The default Admin password is
spiff.

6. Click Next. The MapleNet Publisher/Deploy dialog opens. Enter the path
and destination jar filename, for example, enter /Projects/tutor1.jar.
The Publisher places the tutor1.jar on the server in the /Projects
directory and then extracts all the files from tutor1.jar into this
directory.

7. Click Finish. The MapleNet Publisher closes.

4.7 Accessing Published JSP Content

Demonstrating with the example files of the previous section, a user can
access the published Web pages using the following URL.

http://Servername/maplenet/Projects/Tutorial/integration.jsp
The path is based on the destination parameter specified in the PublishJar
(publishjar in UNIX) command. (See Table 7.)

44 • Developing JavaServer Pages for MapleNet

5 Developing Worksheets for MapleNet

In this chapter
• Writing worksheets for MapleNet
• Client and server considerations
• Publishing worksheets to the MapleNet server
• Accessing published worksheets

5.1 Writing Worksheets for Use on MapleNet

MapleNet can display both standard and classic worksheets in a Web browser,
even if the worksheets have not been specifically designed for it. Content is
static in any worksheet displayed by MapleNet, with the following exceptions.

• Embedded components are fully functional, including plot components,
buttons, toggle buttons, check boxes, math containers, combo boxes, list
boxes, labels, and sliders

• Content that can be modified using embedded components behaves
accordingly

• Standard plot output can be manipulated normally
• Sections can be collapsed and expanded

When displayed by MapleNet, the embedded components provide means for a
user to add new input to a worksheet.

The limitations imposed on worksheets displayed by MapleNet are as follows.

• Maplets are disabled
• System calls and file I/O are disabled, by default

Worksheets that contain these disabled features can still be viewed on
MapleNet, but the generated page may contain error messages indicating
these operations are disabled. As a result, these worksheets may not function
as expected.

When a worksheet is loaded by MapleNet, all autoexecutable commands are
evaluated before that worksheet is displayed to the user. Therefore, the state
of a worksheet when first opened by a user is the same as the state of the
worksheet when opened and autoexecuted in Maple. As a result, the logic of a
worksheet can be fully tested before being deployed to MapleNet.
45

46 • Developing Worksheets for MapleNet
Worksheets displayed on MapleNet are rendered with a fixed width. This
width is specific to each worksheet, and is set in Maple by changing the math
formatting width. This option is found on the General tab of the
Tools>Options dialog.

All relatively sized tables in the worksheet are scaled relative to this limit,
and any content that is too large is scaled to fit. That is, changing the math
formatting width has the same effect on worksheet layout as resizing the
window in Maple. The math formatting width is converted to approximately
100 pixels per inch.

Tips to Improve Worksheet Layout
Refrain from using tables unnecessarily. If a table provides no useful
formatting, it would be best to remove it. Placing content such as images,
plots, or sketches inside table cells imposes size restrictions on these
elements. When the table cells are scaled to the math formatting width, these
restrictions may be undesirable and unnecessary.

Maple sketch regions are cropped, not resized, when placed inside table cells.
MapleNet, however, will scale the sketch to fit the cell. For sketches to be
displayed the same in both instances, it is important to resize sketch regions
in Maple to fit their table cells. To resize a sketch in Maple, simply drag the
sketch border.

Try to avoid scaling images. The scaling of images may introduce undesirable
artifacts. It is best to generate images of the correct size, and display them
without scaling.

Tips to Improve Worksheet Performance
In a worksheet viewed on MapleNet, when an action is performed on an
embedded component, a request is submitted to the server to execute the
associated Maple code. However, if this action code is empty, no request is
generated. This prevents unnecessary requests to the server. To take
advantage of this optimization, if the action code of an embedded component
does no real work, the code should be removed. Note that the default action
code on a new component is not empty, even though its execution has no effect
on the state of the worksheet.

Use collapsed sections to help improve the loading time of worksheets. If it is
not necessary to have all the components visible when a worksheet is loaded,
place any extraneous components in collapsed sections, to be expanded and
accessed by the user as needed.

5.2 Client Considerations • 47
5.2 Client Considerations

Browser support
For a worksheet to have full functionality when viewed on MapleNet, the
client’s browser must support the following.

• Java 1.4.2 (or better)
• JavaScript
• LiveConnect (communication between JavaScript and Java applets)

There are free, downloadable browsers available for recent versions of
Macintosh, Windows, and UNIX/Linux operating systems.

For browsers that do not support LiveConnect, or have JavaScript disabled,
MapleNet will render a version of the worksheet that has limited
functionality.

In browsers without LiveConnect:

• Embedded component sliders and math containers can be used for output
only

In browsers without JavaScript:

• Embedded component sliders and math containers can be used for output
only

• Actions on components, except buttons and toggle buttons, will not trigger
requests to be submitted to the server

Memory Limitations
Plots, plot components, slider components, and math container components
are all displayed as Java applets in the client Web browser. As a result, the
amount of memory available to these elements is limited by the client Java
plug-in settings. This limit is configurable, with a default value of
approximately 100MB. This is more than enough memory for the applets
themselves, but it does impose restrictions on the amount of data the applets
can display.

If you are creating large worksheets, you may need to inform your users to
increase the default limit.

Delay on First Use
As previously stated, plots, plot components, slider components, and math
container components are displayed as Java applets. The first time a user

48 • Developing Worksheets for MapleNet
accesses a worksheet containing these elements, there will be a delay as their
browser automatically downloads the applets. Once these applets have been
downloaded, they are cached and do not need to be downloaded for any other
worksheets at the site. This cache is persistent between browser sessions.

5.3 Server Considerations

Each worksheet opened by each user requires a server-side representation of
the worksheet in memory and an instance of the Maple kernel, just as it does
in Maple. The memory and processing requirements of this representation are
approximately the same as they are in Maple. These resources remain
allocated to the worksheet until it is closed by the user (using the Close
button in the worksheet interface) or until the user’s session expires due to
inactivity.

It is possible to increase the amount of memory available to MapleNet. For
more details, refer to the Administration Guide or consult your site
administrator.

5.4 Customization of the MapleNet Worksheet
Interface

When worksheets are viewed on MapleNet, an interface to the Web
application is included in the header and footer of the page. It is possible to
modify the look of this interface, but this customization requires a
reconfiguration of the MapleNet server. For more details, please refer to the
Administration Guide.

5.5 Publishing Worksheets to the MapleNet Server

Publishing a worksheet on a MapleNet server requires only the copying of the
worksheet file into the appropriate directory on the server. Consult your site
administrator to find out where your worksheets must be placed.

To publish files on the server, follow the instructions in Publishing JSP
Content to the MapleNet Server on page 39 of this guide. Alternatively,
worksheets can be published using any tool, such as FTP, SSH, or WebDAV,
to transfer the files to the correct directory on the server.

5.6 Accessing Published Worksheets

Consult your site administrator for the exact URL to access your worksheets.
Assuming the MapleNet server is myserver.com and that your worksheet

5.6 Accessing Published Worksheets • 49
myworksheet.mw is located in the directory worksheet of the MapleNet
Web application, it can be accessed by pointing your browser to
http://myserver.com/maplenet/worksheet/myworksheet.mw.

50 • Developing Worksheets for MapleNet

51

Appendix A

The following JAR files contain MapleNet code for the client side. All
applications must be compiled with these files on the classpath. These files
must also be made accessible to users in your Web root when publishing
MapleNet content.

• maplenetclient.jar
• maplenetclient-client.jar
• maplenetclient-freehep.jar
• maplenetclient-index.jar
• maplenerclient-maplenet.jar
• maplenetclient-maplet.jar
• maplentclient-mathdoc.jar
• maplentclient-mathdoc2.jar
• maplenetclient-misc.jar
• maplentclient-openwiz2.jar
• maplentclient-plot.jar
• maplentclient-util.jar
• maplentclient-utilcodepage.jar
• maplentclient-url.jar
• maplentclient-webeq3.jar

The JAR files are indexed for efficient download. Only the maplenetclient-
index.jar must be specified in the applet archive parameter in the .html
file. The other JAR files listed here will be downloaded as needed as long as
they reside in the same directory as maplenetclient-index.jar in your Web
root.

	1 Introduction
	1.1 Prerequisites
	1.2 Installing MapleNet Publisher
	1.3 General Notes

	2 Developing Java-based Applets for MapleNet
	2.1 Developing Java-based Applets
	2.2 Writing Java-based Applets
	2.3 Compiling Java Code
	2.4 Creating a JAR File that Contains a Manifest
	2.5 Creating an HTML Page
	2.6 Publishing Files to the MapleNet Server
	2.7 Accessing Published Content

	3 Developing Maplet Applications for MapleNet
	3.1 Writing a Maplet Application Compliant with MapleNet
	3.2 Creating an HTML Page
	3.3 Publishing Files to the MapleNet Server
	3.4 Accessing Published Content

	4 Developing JavaServer Pages for MapleNet
	4.1 Prerequisites
	4.2 Creating MapleNet JSP Content
	4.3 Page Setup
	4.4 Using Maple Tags
	4.5 Examples
	4.6 Publishing JSP Content to the MapleNet Server
	4.7 Accessing Published JSP Content

	5 Developing Worksheets for MapleNet
	5.1 Writing Worksheets for Use on MapleNet
	5.2 Client Considerations
	5.3 Server Considerations
	5.4 Customization of the MapleNet Worksheet Interface
	5.5 Publishing Worksheets to the MapleNet Server
	5.6 Accessing Published Worksheets

	Appendix A

